Journal of Qrganometallic Chemistry, 73 **(1974)** *27-34 0* **Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands**

THERMAL DECOMPOSITION OF ANIONIC ORGANOALUMINUM coMPoTJNDs

V. THE PREPARATION AND CRYSTAL STRUCTURE OF THE (ISOPROPYL 1DENEAMINO)DIMETHYLALUMINUM DIMER

SK. SEALE and J.L. ATWOOD*

Department of Chemistry, University of Alabama, University, Alabama 35486 (U.S.A.) **(Received December llth, 1973)**

Summary

The thermolysis of $K[A_2(CH_3)_6$ SCN] at 120° leads to the formation of $[(CH₃)₂ AlNC(CH₃)₂]$. Verification of the dimeric configuration of (isopropyl**idenamino)dimethylahuninum has been obtained from three-dimensional X-ray** data measured by counter methods. $[(CH₃)₂ AlNC(CH₃)₂]$ ₂ crystallizes in the **triclinic space group** $P\overline{1}$ **with cell dimensions a 7.027(4),** *b* **7.760(4),** *c* **8.583(4)** A, α 115.70(5)[°], β 105.72(5)[°], γ 92.38(5)[°], and ρ_{calc} 0.94 g/cm³ for $Z=1$. Leastsquares refinement gave a final conventional R value of 0.058 for 1230 indepen**dent reflections. Proposed structures of the parent 2/l complex, as well as mechanisms for the formation of (isopropylidenamino)dimethylahuninum are discussed.**

Introduction

The thermolysis of anionic organoaluminum compounds of the type $M[A_2(CH_3)_6X]$ [1–3] and $M[A(CH_3)_3X]$ [4] (where M = alkali metal, te**tramethylammonium ion; X = halide, pseudohalide) has been shown to produce** a range of new compounds. In particular, $K[A_2(CH_3)_6SCN]$ decomposes to (iso**propylidenamino)dimethylaluminum according to the reaction sequence:**

$$
\text{KSCN} + 2\text{Al}(\text{CH}_3)_3 \rightarrow \text{K}[\text{Al}_2(\text{CH}_3)_6 \text{SCN}] \xrightarrow{120^\circ} \{(\text{CH}_3)_3 \text{Al} - \text{NC} - \text{CH}_3\} \rightarrow \text{[}(\text{CH}_3)_2 \text{Al} \text{NC}(\text{CH}_3)_2]
$$

Trimethyl(acetonitrile)ahuninum was not isolated in this case, but its presence was confirmed in the related reaction of tetraisocyanatogermanium and trimethylaluminium [51. The final step of the scheme given above involves the wellknown thermal nitrile rearrangement proposed by Wade et al, [S] (eqn. 1).

^{*} Author to whom correspondence should be addressed.

In the solid state the anion of $K[A_2(\text{CH}_3)_6\text{SCN}]$ is believed to exist as the purely S-bonded species $(I \cdot \text{on the basis of spectroscopic studies } [7,8]$ and

by analogy to the known structure of $K[A_2(\text{CH}_3)_6N_3]$ [9, 10]. We report here final confirmation of the structure of $[(CH_3)_2]$ ² AlNC $(CH_3)_2$ ³ and new evidence bearing on the structure of the $[A1_2(CH_3)_6SCN]$ ⁻anion in the melt.

Experimental

(Isopropylidenamino)dimethykkuninum was prepared by the thermolysis of $K[A]_2(CH_3)_6$ SCN] in the manner previously described [1]. The compound **is** the same in every respect as that synthesized by the reaction of trimethylaluminum and acetonitrile [6].

Single crystals of (isopropylidenamino)dimethylaluminum were grown by slow sublimation and sealed in thin-walled glass capillaries. Preliminary unit cell parameters were determined by precession (CuK_{α}) photographs. Final lattice parameters as determined from a least-squares refinement of the angular settings of 12 reflections accurately centered on a diffractometer are given in Table 1. A Delauney reduction confirmed that this was, in fact, the reduced cell.

```
TABLE1 
CRYSTAL DATA
```

```
Mol. formula: [(H_3C)_2AINC(CH_3)_2]_2Mol.wt: 226.3 
Linear abs. coeff \mu: 15.0
Calcd. density: 0.94 g/cm<sup>3</sup>
Max crystal dimensions: 0.12 mm X 0.22 mm X 0.60 mm 
Space group: triclinic, P 5 
Molewles/&it cell: 1 
Cell Coxlstants: a7.027(4). b 7.760(4).c 8.583(4)& 
                  \alpha 115.70(5), \beta 105.72(5), \gamma 92.38(5)<sup>°</sup>; v=399 Å<sup>3</sup>
```
Data were taken on an Enraf-Nonius CAD-4 diffractometer with Ni-fiitered **copper radiation. The general details of the data collection process and the method of determination of standard deviations of the intensities have been reported** [5]. A complete sphere of data was measured out to $2\theta = 140^{\circ}$, and after averaging, yielded 1230 reflections deemed observed by the criterion that $I > \sigma_r$. **The intensities were corrected in the usual manner for Lorentz and polarization effects but not for absorption. (Because of the small value of the linear absorp**tion coefficient (μ = 15.0), the minimum and maximum transmission factors **are estimated to differ by 5%).**

Fourier calculations were made with the ALFF [ll] program. The fullmatrix, least-squares refinement was carried out using the Busing and Levy program ORFLS [12]. The function $w(|F_{\alpha}|-|F_{\alpha}|)^2$ was minimized. No cor**rections were made for extinction or anomalous dispersion. Neutral atom scatc tering factors were taken from the compilations of Cromer and Waber [13] for Al, N and C. Those for H were from ref. 14. Final bond distances, angles, and errors were computed with the aid of the Busing, Martin, and Levy ORFFE [15] program. Crystal structure illustrations were obtained with the program ORTEP [161.**

Solution and refinement of the structure

Statistical tests based on normalized structure factors did not allow a clear decision as to the space group, but structure solution, accomplished by **direct methods 1171, eventually upheld the centric** *P* **1 as the correct choice.** Several cycles of isotropic refinement led to an R value given by R_1 = $\sum ||F_{\circ}|-|F_{\circ}||/\sum |F_{\circ}| = 0.13$. Conversion to anisotropic temperature factors, lo**cation of the hydrogen atoms, application of a weighting scheme [18] (based** on essentially unit weights), and further least-squares refinement led to R_1 = 0.058 and $R_2 = {\sum w (|F_{\alpha}| - |F_{\alpha}|)^2}/{\sum w (F_{\alpha})^2}$ $^{1/2} = 0.058$. The hydrogen atom **coordinates were not refined, and unobserved reflections were not included. The largest parameter shifts in the final cycle of refinement were less than 0.05 of their estimated standard deviations. A final difference Fourier map showed no feature greater than** *0.3 e-/A",* **The standard deviation of an observation of unit weight was 2.00. The values of the positional and thermal parameters are given in Table 2".**

Discussion

--

It is at the outset quite surprising to find that the 120" thermolysis of the 2/1 complex of trimethylaluminum with potassium thiocyanate yields (iso**propyIidenamino)dimethylaluminum (eqn. 2). (K[(CH3)z AlS] was not iso-**

$$
2K[A_2(CH_3)_6\text{SCN}] \xrightarrow[120^\circ]{} [(CH_3)_2\text{AlNC(CH}_3)_2]_2 + 2K[(CH_3)_2\text{AlS}]
$$
 (2)

The table of structure factors has been deposited as NAPS Document No. 02382, with ASIS/NAPS. **c/o Microfiche Publications. 306 E. 46th Street, New York. New York 10017. A copy may be secured by citing the document and** remitting **b 1.50 for microfiche or \$ 5.00** for **photocopies. Advance payment is required. Make checks payable to Microfiche Publications.**

"Anisotropic thermal parameters X 10" defined by exp 1—(#₁₁^4 + #2₂₂^4 + #231² + #2123^4) + #2423^47)]. "Hydrogen atom coordinates were not refined,
and isotropic B was set at 5.0 Å ². <code>AAnisotropic</code> thermal parameters X 10⁴ defined by exp $\{-(\beta_1, k^2 + \beta_2, k^2 + \beta_3, k^2 + 2\beta_1, k^2 + 2\beta_1, k^2 + 2\beta_2, k\}$]. PHydrogen atom coordinates were not refined, and Isotropic B was set at 6.0 A'.

 $\ddot{}$

l,

 $\ddot{}$

 $\ddot{}$ J

 $\ddot{}$

J,

 $\ddot{}$

J.

TABLE 2

TABLE 2

lated from the yellow-red viscous residue, but is shown for material balance). The thiocyanate moiety normally behaves as a unit in inorganic reactions; there is to our knowledge no precedent for cleavage of the sulfur-carbon bond in any environment at such a low temperature. It is, however, possible to construct a mechanism for the formation of the observed products if one admits the likelihood of (CH_3) ₃ Al-NC-CH₃ as an intermediate [5]. In a multistep, roundabout **fashion the decomposition may take place as in II with the formation of a molecule of acetonitrile which then seeks out a free trimethylaluminum molecule in**

the melt to form trimethyl(acetonitrile)aluminum. The temperature is well above the 80[°] necessary for the rearrangement of two molecules of $\rm (CH_3)_3Al-NC-CH_3$ into $[(CH₃)₂ AlNC(CH₃)₂].$ This assumes the S-bridged structure for the anion; considerable simplification would be experienced if $[A]_2(CH_3)_6$ SCN]⁻ possessed **a head-to-tail bridged thiocyanate group (III). Here the acetonitrile adduct of**

trimethylaluminum is produced directly. The step-wise mechanism we propose therefore involves an intramolecular rearrangement based on the well-known ability of the trimethy1aluminum group to function as an alkylating agent (Scheme 1).

There is good reason to believe the solid state structure of $K[A_2(CH_3)_6SCN]$ exhibits the S-bridged thiocyanate moiety $[7-10]$. On the other hand, one may **cite two pieces of evidence that the head-to-tail bridged configuration lies only** slightly higher in energy. The failure of $K[A_2(C_2H_5)_6$ SCN] to form a liquid com**plex with benzene or toluene [19] is an indication of a different shape for the** anion (in comparison with $K[Al_2(CH_3)_6$ SCN]). Thus, the nonbonded repulsion **of the ethyl groups appears to preclude the S-bridged structure. Secondly, the geometry of the anion has been shown to depend in a subtle fashion on the na-**

ture of the cation. In $K[A(CH_3)_3$ SCN] the thiocyanate ion is S-bonded [7], while in $[(CH_3)_2T1][Al(CH_3)_3NCS]$ it is *N*-bonded [20]. Therefore the differen**ce in the donor ability of the-sulfur vs. the nitrogen atom of the thiocyanate group is small enough to be offset by the "nonbonded" interaction of the cation.**

In summary, it seems likely that the true structure of the $[A1_2(CH_3)_6SCNI$ ⁻ **ion is best represented by an equilibrium (eqn. 3), which at room temperature** lies far to the left for the potassium salt, but at melt temperatures $(>100^{\circ})$ lies **well to the right. (The driving force is viewed as the increased steric interaction of the nonbonded methyl groups at higher temperatures.)**

As predicted by Wade and coworkers [61, (isopropylidenamino)dimethylaluminum exists & a dimer (Fig. 1) which resides on a crystallographic center of

Fig. 1. Molecular structure of the (isopropylidenamino)dimethylaluminum dimer with the atoms displayed **as their 50% probability ellipsoids for thermal motion.**

inversion. The aluminum—nitrogen bond distance of 1.926(2) Å agrees well with those reported for other cyclic Al-N systems: $1.91(3)$ Å in $[(CH_3)_2 AlN(CH_2)_2]_3$ [21] and 1.92(2) Å in $[(C_6H_5)_2AINC(C_6H_5)(C_6H_4Br)]_2$ [22]. Likewise, the alu**minum-carbon length, 1.973(3) A, is quite close to thestandards set in other well-determined organoaluminum structures [23,24]. Other bond distances and angles witbin the molecule, given in Table 3, are in accord with those found in related (but less well-characterized) systems [221.**

The intermolecular contacts (Fig. 2) are typical of a molecular compound of this type] 51.

^{*a*Related to atom listed in Table 2 by $(\bar{x}, \bar{y}, \bar{z})$ + unit cell translations along y and z. ^bHydrogen atom posi-} **tions were not refined. but a realistic standard deviation of these bond lengths is 0.1 A.**

Fig. 2. Unit cell packing for the *(isopropylidenamino)dimethylaluminum dimer.*

Acknowledgements

We are grateful to the national Science Foundation for support of this work under Grant GP-24852. Helpful discussions with Robert H. Garner are also acknowledged.

References

- **1 J.L. Atwood. P.A. Milton and S.K. Scale, J. Organometal. Chem.. 28 (1971) C29.**
- **2 J.L. Atwood and D.C. Hrncir. J. Organometal. Chem., 61 (1973) 43.**
- **3 SK. Scale and J.L. Atwood. unpublished results.**
- **4 J-L. Atwood and P.A. Milton. J. Organometal. Chem.. 36 (1972) Cl.**
- **5 J.L. Atwood. S-K. Scale and D.H. Roberts. J. Organometal. Chem.. 51 (1973) 105.**
- **6 J.R. Jennings. J.E. Lloyd and K. Wade. J. Chem. Sot.. (1965) 5083.**
- **7 F. Weller, I.L. Wilson and K. Dehnicke. J. Organometal. Chem., 30 (1971) Cl.**
- **8 F. Weller and K. Dehnicke. J. OrganometaL Chem.. 36 (1972) 23.**
- **9 J-L. Atwood and W.R. Newberry. III. J. Organometal. Chem.. 42 (1972) C77.**
- **10 J.L. Atwood** *and* **W.R. Newberry, III. J. Organometal. Chem.;65 (1974) 145.**
- **11 CR. Hubbard. C-0. QuicksaB. and R.A. Jacobson. USAEC Report IS-2625. Ames Laboratory. Iowa State University. Ames. Iowa, 1971.**
- **12 W.R. Busing,** *K.O. Martin,* **and H.A. Levy, "ORFLS, A Fortran Crystallographic Least-Squares** Program", Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1962.
- **13 D.T. Cramer and J.T. Waber. Acta Cxystallogr.. 18 (1965) 104.**
- **14 c%rternational Tables for X-ray Crystallography". Vol. III. Kynoch Press. Birmingham. England. 1962.** P. **202.**
- **15 W.K. Busing. K.O. Martin and H.A. Levy, "ORFFE. A Fortran Crystaliographic Function and Error program" Report ORNL-TM-306. Oak Ridge National Laboratory. Oak Ridge. Term_. 1964.**
- 16 C.K. Johnson, "ORTEP, A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations", **Report ORNL-3794. Revisad. Oak Ridge National Laboratory. Oak Ridge. Term., 1966. P. 70.**
- 17 G. Germain, P. Main and M.M. Woolfson, Acta Crystallogr., Sect. A, 27 (1971) 368.
- **18 J.L. Atwood and K-D. Smith. J. Amer. Chem. Sot.. 96 (1974) 994.**
- **19 J.L. Atwood and L.K. Bowles. unpublished results.**
- **20 S.K. Scale and J.L. Atwood. J. Organometal. Chem.. 64 (1974) 57.**
- **21 J.L. Atwood and G-D. Stucky. J. Amer. Chem. Sot.. 92 (1970) 285.**
- **22 W.S. McDonald. Acta Crystaliogr., Sect B. 25 (1969) 1385.**
- **23 J.L. Atwood and R.E. Cannon. J. Organometal. Chem.. 47 (1973) 321.**
- **24 J.C. Huffman and W.E. Streib. Chem. Connnun.. (1971) 911.**